Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Alajos Kálmán, ${ }^{\text {a }}$ László Fábián, ${ }^{\text {a }}$ Gyula Argay, ${ }^{\text {a }}$ Gábor Bernáth ${ }^{\mathbf{b}}$ and Zsuzsanna Gyarmati ${ }^{\text {b }}$

${ }^{a}$ Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, Budapest 114, H-1525, Hungary, and ${ }^{\mathbf{b}}$ Research Group for Heterocyclic Chemistry, Hungarian Academy of Sciences and University of Szeged and Institute of Pharmaceutical Chemistry, University of Szeged, PO Box 121, Szeged, H-6701, Hungary

Predictable close-packing similarities between cisand trans-2-hydroxy-1-cyclooctanecarboxylic acids and trans-2-hydroxy-1-cyclooctanecarboxamide

In order to extend the experimental data already available on the close packing of cyclopentanes substituted with vicinal $\mathrm{COX}\left(X=\mathrm{OH}, \mathrm{NH}_{2}\right)$ and OH groups to the analogous cyclohexanes, cycloheptanes and cyclooctanes, $\left(1 R^{*}, 2 S^{*}\right)$-cis-2-hydroxy-1-cyclooctanecarboxylic acid (8C), ($1 R^{*}, 2 R^{*}$)-trans-2-hydroxy-1-cyclooctanecarboxylic acid (8T) and $\left(1 R^{*}, 2 R^{*}\right)$-trans-2-hydroxy-1-cyclooctanecarboxamide (8T*) were subjected to X-ray crystal structure analysis. In 8 T and $8 \mathrm{~T}^{*}$, the hydrogen bonds form infinite ribbons of dimers joined by $R_{2}^{2}(12)$ rings with C_{i} symmetry. Two types of dimer alternate along each ribbon. The dimers differ in the donor and acceptor roles of the functional groups. This pattern was previously deduced topologically among the possible forms of association for heterochiral dimers [Kálmán et al. (2002). Acta Cryst. B58, 494-501]. As they have the same pattern of hydrogen bonds, 8 T and $8 \mathrm{~T}^{*}$ are isostructural. The additional donor (i.e. the second hydrogen of the NH_{2} group) present in 8T* links the adjacent ribbons so as to form smaller $R_{2}^{2}(8)$ rings between them. The crystals of the cis stereoisomer 8 C are built up from antiparallel hydrogen-bonded helices. The topology and symmetry of this structure are the same as for the close packing of $\left(1 R^{*}, 2 R^{*}, 4 S^{*}\right)$-4-tert-butyl-2-hydroxy-1cyclopentanecarboxamide [Kálmán et al. (2001). Acta Cryst. B57, 539-550]; only the hydrogen-bond donors and acceptors are interchanged, in the same way as in the two dimer types of 8 T and 8 T * ribbons. This analogy suggests that helices may originate as homochiral dimers with C_{2} symmetry and polymerize into helices during crystal formation. The conformational characteristics of the heterochiral dimers observed in the title compounds and in closely related structures are discussed.

1. Introduction

The systematic structure analyses of numerous cis- and trans-1,2-disubstituted cyclopentanes, cyclohexanes and cycloheptanes and analogous trisubstituted cyclopentanes resulted in the recognition of principal close-packing patterns (Kálmán et al., 2001, 2002). As a continuation, the present paper reports on the crystal structures of analogous cyclooctane derivatives. The crystal structure of 8 T comprises linear arrays of two kinds of heterochiral dimers (Fig. 1a) joined by $R_{2}^{2}(12)$ rings (Etter, 1990; Bernstein et al., 1995). They differ in the acceptor group(s) of the hydrogen bonds. OC dimers are formed by $\mathrm{OH} \cdots \mathrm{OC}$ hydrogen bonds (hereinafter $H B 1$), whereas OH dimers are formed by $\mathrm{OH} \cdots \mathrm{OH}$ hydrogen bonds (hereinafter HB2).

To simplify the description of these dimers, it is convenient (Kálmán et al., 2002) to formulate the homologous 1,2-disubstituted alicyclic monomers (Fig. 1a) on paper by

Received 2 March 2002
Accepted 28 May 2002
omitting their saturated rings and depicting the functional groups by graphical symbols (Fig. 1b). A straight line represents an OH group, a circle an OC group and a triangle (in carboxamides) an NH_{2} group. To distinguish between the $\mathrm{C} 1-R$ and $\mathrm{C} 1-S$ enantiomers, the symbols are converted into black or white triangles (Fig. 1c). The heterochiral dimers are joined by hydrogen bonds (Fig. 1d).

The parallel ribbons of 8 T molecules are depicted by these symbols in Fig. 2(a). In these ribbons, the OC and OH dimers alternate. In other words, the heterochiral connection between two dimers of either type generates the other dimer, and this linear array is therefore unique. It can be regarded as the principal form of the close-packing patterns recognized so far (Kálmán et al., 2001, 2002). This pattern is scarcely altered when the carboxyl groups of 8 T are replaced by carboxamide moieties. As shown in Fig. 2(a), the parallel ladders (ribbons)

(a)

(b)
(c)

(d)

Figure 1
(a) The basic forms of the cyclic dimer OC (left) and OH (right), observed in 2-hydroxy-1-cyclopentane- $(n=1)$, -cyclohexane- $(n=2)$, -cycloheptane- $(n=3)$ and -cyclooctane- $(n=4)$ carboxylic acids. In general, $R=\mathrm{H}$ or an alkyl group. (b) Symbolic form: straight lines represent OH groups, small triangles (in carboxamides) represent NH_{2} groups and circles represent OC groups. (c) To distinguish between the enantiomers, the stick symbols are converted into black or white triangles. (d) The symbolic dimers are held together by hydrogen bonds depicted as $\cdots>(\mathrm{OH} \cdots \mathrm{O}=\mathrm{C})$ and $\cdots>(X \mathrm{H} \cdots \mathrm{OH})(X=\mathrm{O}$ in COOH or NH in $\left.\mathrm{CONH}_{2}\right)$. In carboxamides $\left(8 \mathrm{~T}^{*}\right)$, the third hydrogen bond $(X \mathrm{H} \cdots \mathrm{O}=\mathrm{C})$ is denoted by --->.
formed by the OC and OH dimers can be cross-linked by additional $R_{2}^{2}(8)$ synthons (Desiraju, 1995). Each entering NH_{2} group [small triangles in Fig. 2(b)] affords a new hydrogen bond with the nearest carbonyl group of a parallel ribbon. The crystal structure of $8 \mathrm{~T}^{*}$ confirmed this expectation.

This unique pattern (Fig. 2a) is basically reassembled, however, if either the heterochiral OH or the OC dimers become homochiral, i.e. their C_{i} symmetry is changed to C_{2}. The homochiral dimers may exist in solution, but in the crystalline state, in accordance with the close-packing rules of Zorky (1993), they polymerize into either parallel or antiparallel helices. Such antiparallel helices, formed from the homochiral OH dimers, were observed in the structure of 8 C .

2. Experimental

2.1. Synthesis

The syntheses, characterization and chemical reactions of $8 \mathrm{~T}, 8 \mathrm{C}$ and $8 \mathrm{~T}^{*}$ have been reported previously (Bernáth et al., 1974, 1975).

Figure 2
Symbolic (topological) presentation of the close packings of 8T (a) and $8 \mathrm{~T}^{*}(b)$ projected onto the $a b$ plane of the common triclinic unit cell, space group $P \overline{1}$.

Table 1
Experimental details.

	8T	8T*	8C
Crystal data			
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$
Chemical formula weight	172.22	171.24	172.22
Cell setting, space group	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$	Monoclinic, $P 2_{1} / c$
$a, b, c(\AA)$	6.035 (1), 8.390 (1), 9.389 (2)	6.760 (1), 7.314 (1), 11.217 (1)	11.082 (1), 7.618 (1), 11.579 (1)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	84.29 (1), 76.37 (1), 77.95 (1)	79.22 (1), 74.12 (1), 69.45 (1)	90, 105.67 (1), 90
$V\left(\mathrm{~A}^{3}\right)$	451.20 (13)	496.93 (11)	941.20 (17)
Z	2	2	4
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.268	1.144	1.215
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
No. of reflections for cell parameters	25	25	25
θ range (${ }^{\circ}$)	17.0-18.91	12.04-14.35	16.23-17.84
$\mu\left(\mathrm{mm}^{-1}\right)$	0.094	0.080	0.090
Temperature (K)	293 (2)	293 (2)	293 (2)
Crystal form, color	Prism, colorless	Prism, colorless	Prism, colorless
Crystal size (mm)	$0.60 \times 0.40 \times 0.30$	$0.30 \times 0.25 \times 0.02$	$0.50 \times 0.40 \times 0.25$
$F(000)$	188	188	376
Data collection			
Diffractometer	Enraf-Nonius CAD-4	Enraf-Nonius CAD-4	Enraf-Nonius CAD-4
Data collection method	$\omega-2 \theta$ scans	$\omega-2 \theta$ scans	$\omega-2 \theta$ scans
Absorption correction	φ-scan	φ-scan	φ-scan
$T_{\text {min }}$	0.9346	0.8932	0.9579
$T_{\text {max }}$	0.9799	0.9946	0.9876
No. of measured, independent and observed reflections	8683, 3931, 2585	4315, 1941, 989	4372, 4074, 2100
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.0213	0.0257	0.0159
$\theta_{\text {max }}\left({ }^{\circ}\right)$	34.95	25.99	34.95
Range of h, k, l	$-9 \rightarrow h \rightarrow 9$	$-8 \rightarrow h \rightarrow 8$	$-17 \rightarrow h \rightarrow 17$
	$-13 \rightarrow k \rightarrow 13$	$-9 \rightarrow k \rightarrow 9$	$-12 \rightarrow k \rightarrow 0$
	$-15 \rightarrow l \rightarrow 15$	$-13 \rightarrow l \rightarrow 13$	$0 \rightarrow l \rightarrow 18$
No. and frequency of standard reflections	3 every 60 min	3 every 60 min	3 every 60 min
Intensity decay (\%)	3	2	3
Completeness to 2θ	0.993	0.999	0.987
Refinement			
Refinement on	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.0442, 0.1417, 0.949	0.0431, 0.1464, 0.837	0.0502, 0.1543, 0.847
$w R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.1284	0.1225	0.1361
$R\left(F^{2}\right)$	0.0693	0.1043	0.1098
No. of reflections, restraints and parameters used in refinement	3931, 101, 111	1941, 146, 110	4074, 99, 111
H -atom treatment	Riding	Riding	Riding
Weighting scheme	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right] \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right] \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right] \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$
$(\Delta / \sigma)_{\text {max }}$	0.000	0.000	0.000
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.327, -0.195	0.163, -0.141	0.307, -0.166

Computer programs used: CAD-4 EXPRESS (Enraf-Nonius, 1992), XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, $1997 b$), SHELXL97 (Sheldrick, $1997 a$).

2.2. Data collection, structure solution and refinement

Details of the cell data, data collection and refinement are provided in Table 1. ${ }^{\mathbf{1}}$ Each data set was collected at room temperature on CAD-4 diffractometers equipped with graphite monochromators. Standard reflections (three for each data collection, measured every 60 min) indicated some crystal decay (2% for $8 \mathrm{~T}^{*}$ and 3% for 8 T and 8 C samples), which was corrected using the program XCAD4 (Harms,

[^0]1996). All reflections were corrected for Lorenz and polarization effects. The space groups were determined from unitcell volume, symmetry (8 T and $8 \mathrm{~T}^{*}$) and systematic absences (8C). The crystallographic phase problems were solved by direct methods using the program SHELXS97 (Sheldrick, 1997b). The atomic positions for each structure were refined with anisotropic displacement parameters in F^{2} mode using the program SHELXL97 (Sheldrick, 1997a). The positions of H atoms bound to O and N atoms were located in differenceFourier maps, while the others were generated from assumed geometry and were refined isotropically in riding mode. The eight-membered rings exhibit the largest thermal motions at

Table 2
Hydrogen bonds and their descriptors.
The symmetry codes given in rows 2,7 and 12 refer to the acceptor atoms of hydrogen bonds.

	8 T	$8 \mathrm{~T}^{*}$
$\mathrm{O} 1-\mathrm{H} 1(x y z) \cdots \mathrm{O} 2$	$-x+1,-y+1,-z$	$-x+1,-y+1,-z+1$
$D \cdots A(\AA)$	$2.739(1)$	$2.732(2)$
$\mathrm{H} \cdots A(\AA)$	1.92	1.92
$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$	176.6	170.0
Symmetry	Inversion center	Inversion center
$\mathrm{O} 3-\mathrm{H} 3(x y z) \cdots \mathrm{O} 1 \mathrm{~N} 1-\mathrm{H} 1 c(x y z) \cdots \mathrm{O} 1$	$-x,-y+1,-z$	$-x+2,-y+1,-z+1$
$D \cdots A(\AA)$	$2.656(1)$	1.98
$\mathrm{H} \cdots A(\AA)$	1.85	$-2.883(2)$
$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$	165.7	2.04
Symmetry	Inversion center	165.9
		Inversion center
$\mathrm{N} 1-\mathrm{H} 1 b(x y z) \cdots \mathrm{O} 2$		$-x+1,-y+2,-z+1$
$D \cdots A(\AA)$	$2.945(2)$	
$\mathrm{H} \cdots A(\AA)$	2.09	
$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$		172.3
Symmetry		Inversion center

C 5 and C 6 (Fig. 3), opposite the $\mathrm{COX}\left(X=\mathrm{OH}\right.$ or $\left.\mathrm{NH}_{2}\right)$ and OH moieties.

3. Results and discussion

3.1. Survey of the structures at a molecular level

The chemical and molecular structures of the three 2-hydroxycyclooctane derivatives are depicted in Fig. 3. The common feature of the saturated eight-membered rings is their similar conformation. Each of them exhibits a boat-chair shape (Hendrickson, 1967) with low asymmetry parameter (Duax et al., 1976): $\Delta C_{s}(2-6)=3.6^{\circ}$ in $8 \mathrm{~T}, \Delta C_{s}(3-7)=3.1^{\circ}$ in $8 \mathrm{~T}^{*}$ and $\Delta C_{s}(3-7)=2.5^{\circ}$ in 8 C . The mean values of the $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ bond lengths [8T, 1.532 (11); 8C, 1.527 (12); and $8 \mathrm{~T}^{*}, 1.526$ (11) \AA] do not differ significantly either. What is different is the position of the substituents on the boat-chair rings. In 8 T , the mirror plane $\left(C_{s}\right)$ of the ring bisects C 2 and C 6 atoms, while in $8 \mathrm{~T}^{*}$ and 8 C the pseudorotation (Altona et al., 1968) turns the mirror plane onto the pair of atoms C3 . C7. From this, it follows that (apart from the effect of the cis-trans isomerism on the relative orientation of the ring functions) the conformations of the $8 \mathrm{~T}^{*}$ and 8 C molecules are similar. In both cases, the orientation of the COX group is equatorial with exocyclic torsion angles $-a c$ and $-a p$ (Klyne \& Prelog, 1960). The cis-trans isomerism is indicated by the different torsion angles around the pseudoaxial OH group: $-a p$ and $s c$ for $8 \mathrm{~T}^{*}$ and $s c$ and $a p$ for 8 C . Consequently, the $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$ torsion angles differ significantly: $71.7(2)^{\circ}$ in $8 \mathrm{~T}^{*}$ and $-43.9(1)^{\circ}$ in 8 C . In contrast, the overall conformation of the 8T molecule with the similarly puckered cyclooctane ring displays a visible difference from the other two. In 8T, the O 2 atom sits on the mirror plane of the boat-chair ring in equatorial position (the corresponding exocyclic torsion angles are $a p$ and $-a p$) and forms a low $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$ torsion angle of $48.0(1)^{\circ}$ with the pseudoequatorial carboxyl group. This may be attributed to intermolecular interactions and in particular to the formation of infinite ladders of alternating

OC and OH dimers. One of them, depicted in Fig. 4(a), reveals a linear array of planar OH and folded OC dimers.

3.2. Hydrogen-bond networks

3.2.1. Dimers and their conformational characteristics. Since each of the structures $8 \mathrm{~T}, 8 \mathrm{~T}^{*}$ and 8 C is self-assembled by OC and OH dimers, their conformational similarities and differences may shed light on the predicted architecture (Kálmán et al., 2002) afforded by similar hydrogen bonds (Table 2). In the course of crystallization, the homochiral OH dimers of 8 C are polymerized into antiparallel helices (Zorky, 1993). Thus, the OC dimers (Fig. 5) remain the common building blocks of the three structures. Surprisingly, the OC dimers of the trans and cis isomers are rather similar (Figs. 5a

(a)

(b)

(c)

Figure 3
Chemical and molecular structures of (a) ($1 R^{*}, 2 S^{*}$)-cis-2-hydroxy-1cyclooctanecarboxylic acid (8C), (b) ($1 R^{*}, 2 R^{*}$)-trans-2-hydroxy-1cyclooctanecarboxylic acid (8T) and (c) ($1 R^{*}, 2 R^{*}$)-trans-2-hydroxy-1cyclooctanecarboxamide ($8 \mathrm{~T}^{*}$) labeled with common atomic numbering. The pairs have opposite chirality.
and $5 b$). Both of them are folded along the $H B 1$ hydrogenbond pairs. In contrast, the OC dimers in $8 \mathrm{~T}^{*}$ are planar (Fig. 5c). In this structure, the OH dimers (Fig. 6a) assume a folded conformation, with endocyclic torsion angles similar to those of the OC dimers in 8 T and 8C (Table 3). The folded conformations of these dimers (numbers 1-3 in Table 3) are characterized by the same sequence of torsion-angle amplitudes as described by the abbreviations of Klyne \& Prelog (1960): $s c,-a c, s p, a c,-s c$. The planar dimers [Figs. 6(b) and $6(c)$ and Table 3], irrespective of the hydrogen bonds that hold them together and of the cis-trans stereoisomerism of the molecules, are hallmarked by a different sequence of the
torsion-angle amplitudes: $s c, s c,-a p, s c, s c$. The OC dimers of $8 T^{*}$ (number 10 in Table 3) exhibit slightly different torsion angles. Their sequence is shifted on the cyclooctane ring by three bonds with respect to the puckering of the planar dimers in the structures of $8 \mathrm{~T},\left(1 R^{*}, 2 S^{*}\right)$-cis-2-hydroxy-1-cycloheptanecarboxylic acid (7C), ($1 R^{*}, 2 S^{*}$)-cis-2-hydroxy-1cyclohexanecarboxylic acid (6C), ($1 R^{*}, 2 R^{*}$)-trans-2-hydroxy-1-cyclopentanecarboxylic acid (5T) (Kálmán et al., 2002) and $\left(1 R^{*}, 2 S^{*}, 4 R^{*}\right)$-cis-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid (IV) (Kálmán et al., 2001). This can be attributed to the presence of additional $R_{2}^{2}(8)$ synthons (Desiraju, 1995) joined by the NH_{2} groups between the adjacent molecular ribbons (Fig. 2b). Accordingly, from Table 3 it follows that the hydrogen-bonded twelvemembered OC and OH rings of C_{i} symmetry can equally assume either a folded or a planar conformation, and this freedom of choice is independent of stereoisomerism.
3.2.2. Close packing and isostructurality of $\mathbf{8 T}$ and $8 \mathbf{T}^{*}$. In a previous paper (Kálmán et al., 2002), we pointed out that the hydrogen-bond pattern of 8 T (Fig. 2a) could be deduced from that of IV [cf. Fig. 10(a) in Kálmán et al. (2002)] if all $H B 1$ bonds turn simultaneously from the respective homochiral chains to their neighboring enantiomers. Correspondingly, the close packing in $8 \mathrm{~T} *$ could also be predicted (see above). Although the symbolic two-dimensional presentations of the crystal structures of 8 T and $8 \mathrm{~T}^{*}$ (Fig. 2) do have advantages and power in making predictions, they conceal relevant three-dimensional information, e.g. the planar and folded conformations of the dimers cannot be seen. The crystal structure of 8T (Fig. 4a) shows an infinite row of planar OH dimers fixed to their inversion centers at $y=0.5$. They are parallel to the $(a+c) / 2$ diagonal and held together by folded OC dimers. The deterministic relationship of these connections is confirmed by the similar close packing of $8 \mathrm{~T}^{*}$ (Fig. 4b). However, direct replacement of the OH functions by NH_{2} groups in the COOH moieties (Fig. 4a) is hindered by the vicinity of the cyclooctane rings. First, this steric hindrance is minimized by the rotation of the CONH_{2} groups (by $c a .180^{\circ}$) and by an increase of $0.725 \AA$ in the a axis (Fig. 4b). The result is an exchange between the OC and OH dimers followed by a turn in the direction of

Figure 4
Stereoviews of the three-dimensional molecular packing of 8T $(a), 8 \mathrm{~T}^{*}(b)$ and $8 \mathrm{C}(c)$.

Table 3
The five independent endocyclic $(A-B-C-D)$ torsion angles of the $R_{2}^{2}(12)$ rings of C_{i} symmetry for $8 \mathrm{~T}, 8 \mathrm{C}$ and $8 \mathrm{~T}^{*}$ and related cyclopentane, cyclohexane and cycloheptane derivatives ($\mathrm{III} \dagger$, $\mathrm{IV} \dagger, 5 \mathrm{~T} \ddagger, 6 \mathrm{C} \ddagger$ and $7 \mathrm{C} \ddagger$).

They are calculated only for non-H atoms. The mean conformation of the similarly puckered rings is also characterized by the abbreviations introduced by Klyne \& Prelog (1960).

Folded dimers							
No.	Dimer	Compound	C2-C1	$\mathrm{C} 1-\mathrm{C} X$ §	$\mathrm{C} X=\mathrm{O} 2$	O . . O1*	O1*-C2*
1	OC	8T	48	-121	15	119	-73
2	OC	8C	44	-104	3	133	-70
					$\mathrm{C} X-\mathrm{N} 3$...O1*	
3	OH	8T*	72	-127	11	113	-62
4	OH	III	73	-137	14	99	-69
	Klyne \& Prelog	sc	$-a c$	$s p$	$a c$	$-s c$	
Planar dimers							
No.	Dimer	Compound	C2-C1	$\mathrm{C} 1-\mathrm{C} X \S$	$\mathrm{C} X-\mathrm{O} 3$	O3..O1*	O1*-C2*
5	OH	8T	48	59	-166	53	68
6	OH	7C	53	55	-166	56	67
7	$\mathrm{OH} \dagger \dagger$	6C	61	53	-163	52	75
8	OH	IV	48	54	-167	62	59
					$\mathrm{C} X=\mathrm{O} 2$	O2...O1*	
9	OC	5 T	80	38	-150	56	79
			C * $^{*}=\mathrm{O} 2^{*}$	O2*...O1	O1-C2	C2-C1	C1-CX
10	OC	8T*	83	38	-151	72	55
	Klyne \& Prelog	sc	sc	$-a p$	sc	sc	

\dagger Kálmán et al. (2001). \ddagger Kálmán et al. (2002). § $X=9$ in $8 \mathrm{C}, 8 \mathrm{~T}$ and $8 \mathrm{~T} * ; X=8$ in $7 \mathrm{C} ; X=7$ in 6 C ; $\dagger \dagger$ and $X=6$ in III, IV and 5 T . © Klyne \& Prelog (1960). $\dagger \dagger 60 \% \mathrm{OH}$ and 40% OC dimers.
both $H B 1$ and $H B 2$ bonds. This is why the OH dimers become folded in $8 \mathrm{~T}^{*}$ (Fig. $6 a$), with the torsion angles listed in Table 3 (number 3), while the planar dimers are held together by the $H B 1$ bonds (Fig. $5 c$). Simultaneously, planar $R_{2}^{2}(8)$ rings (Fig. $2 b$) are produced between the ribbons. These $R_{2}^{2}(8)$ rings diminish the separation between the parallel ladders in the direction of the b axis by $-1.076 \AA$ (Fig. 7) and form a second ladder between the folded OH dimers (Fig. 8), which seems to account for an increase in the c axis by $1.828 \AA$. These changes increase the unit-cell volume by 45.7 (1) \AA^{3}. In spite of these changes, the close packings of 8 T and its carboxamide derivative $8 \mathrm{~T}^{*}$ display a relaxed form of isostructurality (Kálmán \& Párkányi, 1997), i.e. the parallel ladders of OC and OH dimers exhibit an inversion of the planar and folded conformations. The volumetric index of their isostructurality (Fábián \& Kálmán, 1999) is $I_{v}=60 \%$.
3.2.3. Close packing of 8 C and its one-dimensional similarity to 8 T and $\mathbf{8 T}$. As shown by Figs. $4(a)$ and $4(b)$, the folded OC (8T) and OH (8T*) dimers hold together their complementary dimers (OH and OC), which assume a planar conformation. In the monoclinic unit cell of 8C (Fig. 4c), each folded dimer joins two antiparallel helices. The folded OC dimers exhibit similar conformations in the $R_{2}^{2}(12)$ rings of 8 T and 8 C (Figs. $5 a$ and $5 b$), but differ in the orientation of the bulky cyclooctane rings. Because of the cis-trans isomerism, the relative position of the vicinal substituents differs. While the C 8 methylene group in 8 T is well separated from the 2 OH group of the other monomer forming the ring, in 8 C the pseudorotation of the cyclooctane ring brings the C8 methylene group quite close to the respective 2 OH group. This vicinity hinders the parallelism of the $H B 2$-bond pairs, which is the condition of dimer formation with C_{i} symmetry. Instead, the almost perpendicular incoming [equatorial with the $R_{2}^{2}(12)$
ring] and outgoing [pseudoaxial with the $R_{2}^{2}(12)$ ring] $H B 2$ bonds (Fig. 5b) form the helical assembly of the respective OH donors and OC acceptors. The phenomenon may be regarded as a sterically controlled polymorphism of diastereomers. The conformational similarities (Fig. 4) of the infinite ribbons in the triclinic 8 T and $8 \mathrm{~T}^{*}$ and the monoclinic 8 C can be regarded as an example of one-dimensional isostructurality (Anthony et al., 1998).
3.2.4. Linear associations of $\boldsymbol{R}_{2}^{\mathbf{2}}(\mathbf{1 2)}$ dimers. Both OC and OH dimers may associate to form ribbons either parallel with or perpendicular to the principal dimer axis. The latter is termed lateral association of the heterochiral dimers. Two patterns of such an association were deduced from the structures 5T, 6C, 7C and IV (Kálmán et al., 2002) and were denoted hoa1 and hea2 with subgroups hoa1 ${ }_{H}$, hoa 1_{C}, hea 2_{H} and hea $2{ }_{\mathrm{C}}{ }^{2}$, respectively.

If OC and/or OH dimers are arranged parallel to the principal dimer axis in a row (hereinafter termed linear association), there are only three possible forms. With identical orientation, the heterochiral dimers, irrespective of their type, give rise to the pattern exemplified by 8T (Fig. 2a) and denoted hed1. However, when a linear arrangement of the monomers is built up from dimeric units with alternating orientation, the generated 'cementing' dimers are homochiral. This linear assembly again has two alternatives: either the OH or the OC dimers are homochiral (Figs. $9 a$ and 9b). These homochiral dimers may exist in solution, but in the crystalline state (Zorky, 1993) they prefer to polymerize into infinite antiparallel or parallel helices. In the antiparallel arrays

[^1]

(a)

(b)

(c)

Figure 5
Stereoviews of the OC dimers observed in the compounds $8 \mathrm{~T}(a), 8 \mathrm{C}(b)$ and $8 \mathrm{~T}^{*}(c)$. Dimers (a) and (b) are folded, whereas dimer (c) is planar.
(Figs. $9 c$ and $9 d$), the enantiomeric helices are joined by heterochiral OC or OH dimers, respectively. They correspond to two subgroups of the pattern denoted hoa2 (Kálmán et al., 2002).

The title compound 8 C demonstrates subgroup hoa ${ }_{\mathrm{C}}$, in which the helices are linked together by OC dimers. The second subgroup hoa 2_{H} was exemplified by $\left(1 R^{*}, 2 R^{*}, 4 S^{*}\right)-4$ -tert-butyl-2-hydroxy-1-cyclopentanecarboxamide [III in Kálmán et al. (2001)], in which the helices are held together by OH dimers. In both structures, the antiparallel helices are held together by folded dimers (numbers 2 and 4 in Table 3) with similar overall conformation. Another common feature of these two structures is the presence of large homodromic (Jeffrey \& Saenger, 1991) $R_{6}^{6}(24)$ rings, formed by the same sequence of six molecular fragments [$c f$. the 'partitioned' graph-set notations in Table 4 of Kálmán et al. (2001)]. In 8C the sequence of the six fragments with four $H B 2$ and two $H B 1$ bonds is $\leftarrow_{1} 6^{1} \leftarrow{ }_{1} 4^{1} \leftarrow{ }_{1} 2^{1} \leftarrow{ }_{1} 6^{1} \leftarrow{ }_{1} 4^{1} \leftarrow{ }_{1} 2^{1} \leftarrow$, whereas in III the number and direction of the $H B 1$ and $H B 2$ bonds are the
opposite. These facts and the similarity between the monoclinic unit-cell parameters $(\Pi=0.085)$ suggest the relaxed but visible isostructurality (Kálmán \& Párkányi, 1997) of 8 C and III, even though their molecular structures differ.

Of course, the homochiral dimers may also polymerize into parallel helices, which are exemplified by ($1 R^{*}, 2 R^{*}$)-2-hydroxy-1-cyclopentanecarboxamide (II) crystallized with polar orthorhombic space group Pca_{1} (Kálmán et al., 2001). In this structure, the helices are no longer linked by either $R_{2}^{2}(12)$ dimers of C_{i} symmetry or $R_{4}^{4}(12)$ tetramers of C_{2} symmetry. Instead, the close packings of the helices with opposite chirality are controlled by glide planes.

4. Conclusions

The supramolecular similarities exhibited by six cyclopentane derivatives have resulted in the recognition of five patterns (hoa1, hoa2, hea1, hop2 and hep1) of molecular close packing (Kálmán et al., 2001). The sixth pattern, hea2, deduced from the others, is found in the crystals of $5 \mathrm{~T}, 6 \mathrm{C}$ and 7 C (Kálmán et al., 2002). The similar close packing of 5T, 6 C and 7 C reveals that
(i) the $R_{2}^{2}(12)$ rings are held together by either $H B 1$ or $H B 2$ bonds and they can therefore be distinguished in terms of the acceptor groups, either OC (5T) or $\mathrm{OH}(7 \mathrm{C})$;
(ii) each structure possesses a tetramer arranged in an $R_{4}^{4}(12)$ ring with C_{2} symmetry and is hallmarked by the common space group $C 2 / c$.

It has also been concluded (Kálmán et al., 2002) that $R_{4}^{4}(12)$ tetramers, irrespective of their symmetry (either C_{2} or C_{i}), are formed whenever two $R_{2}^{2}(12)$ dimers are joined laterally. These lateral associations may be formed with identical or alternating orientation of the dimers. With identical orientation, the OH dimers form tetramers arranged in rings, compatible with the pattern subgroup hea1 ${ }_{H}$ found in IV (Kálmán et al., 2001).

The present paper reports on the linear associations of heterochiral OH and OC dimers. If the OH or OC dimers are assembled in ribbons with identical orientation, the same pattern (hed1) is generated in both cases. It is exemplified by the structure of 8 T (Figs. $2 a$ and $4 a$). $\mathrm{COOH} \rightarrow \mathrm{CONH}_{2}$ replacement in 8 T leads to $8 \mathrm{~T}^{*}$. In crystals of $8 \mathrm{~T}^{*}$ additional $R_{4}^{4}(8)$ synthons (Desiraju, 1995) are developed, while within the parallel ribbons inherited from 8T only the conformations

(a)

(b)

(c)

Figure 6
Stereoviews of the OH dimers observed in the compounds $8 \mathrm{~T}^{*}(a), 8 \mathrm{~T}(b)$ and $7 \mathrm{C}(c)$. Dimer (a) is folded, whereas dimers (b) and (c) are planar.

Figure 7
Stereoview of a row of planar OC dimers of $8 \mathrm{~T}^{*}$, held together by $R_{2}^{2}(8)$ synthons in the direction of the b axis. In the direction of the a axis, a folded OH dimer can also be seen.

Stereoview of an infinite ladder of folded OH dimers of $8 \mathrm{~T}^{*}$, held together by R_{2}^{2} (8) synthons in the direction of the b axis.
of the OC and OH dimers are interchanged. Consequently, $8 \mathrm{~T}^{*}$ remains isostructural with 8 T . This is the first observation of $R_{4}^{4}(8)$ rings among the homologous 1,2-disubstituted alicyclic derivatives.

If the heterochiral dimers form a linear array with alternating orientation, then two transitional subgroups of close-packing pattern can again be obtained: either the OC or the OH dimers become homochiral in the resulting ribbons. Since homochiral dimers generally exist only in solution, in the crystalline state they polymerize into either antiparallel or parallel helices. Thus, two independent patterns with two subgroups in each can be obtained.

To summarize, the topological combination of hetero- and homochiral $\mathrm{OH} / \mathrm{OC}$ dimers results in six patterns with two subgroups in each (with the exception of hed1). So far, eight of these possibilities, involving all of the patterns, have been demonstrated experimentally. The patterns, compound(s) and the respective space groups are listed in Table 4.

The structure analyses were performed with support from OTKA grant T034985 and the synthetic work with support from OTKA grants T030647 and T034422 and ETT grant 556/2000. Thanks are due to Mr Csaba Kertész for the X-ray measurements and to Mrs Györgyi Tóth-Csákvári for her invaluable help in preparing the manuscript.

References

Altona, C., Geize, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.

Anthony, A., Jaskólski, M., Nangia, A. \& Desiraju, G. (1998). Chem. Commun. pp. 2537-2538.
Bernáth, G., Göndös, Gy. \& Gera, L. (1974). Acta Phys. Chem. Szeged, 20, 139-144.
Bernáth, G., Göndös, Gy. \& Láng, K. L. (1975). Acta Chim. Hung. 86, 187-198. Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Eng. 34, 1555-1573.
Desiraju, G. R. (1995). Angew. Chem. Int. Eng. Ed. 34, 2311-2327.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.

Table 4
Patterns (and their subgroups denoted by indices C and H) of supramolecular self-assembly, deduced either from experimental data or topologically from the possible forms of OC and OH dimer associations.

Structures belonging to the patterns hea1 and hed1, respectively, are isostructural. Similar relationships can be seen between the subgroups of patterns hoa2 and hea2. Structures with space groups $P 2_{1} / c$ (III, 8C) or $C 2 / c$ ($5 \mathrm{~T}, 6 \mathrm{C}, 7 \mathrm{C}$), irrespective of their cis-trans isomerism, are also related by some degree of isostructurality.

Patterns and subgroups	Crystal structures	Space groups
hoa1 ${ }_{\mathrm{H}}$	$\mathrm{IV} \dagger$	$P \overline{1}$
hoa $1_{\text {C }}$	-	$P 1$
hoa $2^{\text {H }}$	$\mathrm{III} \dagger$	$P 2_{1} / c$
hoa2 ${ }_{\text {C }}$	$8 \mathrm{C} \ddagger$	$P 2_{1} / c$
hop2 ${ }_{\mathrm{H}}$	$\mathrm{II} \dagger$	$\mathrm{Pca2}_{1}$
hop2 ${ }_{\text {C }}$	-	Pca2 ${ }_{1}$
hed1	8T $\ddagger, 8 \mathrm{~T} * \ddagger$	$P 1$
hea1 ${ }_{\mathrm{H}}$	$\mathrm{I} \dagger, \mathrm{V} \dagger$	$P 2_{1} / c$
hea1 ${ }_{\text {C }}$	-	$P 2_{1} / \mathrm{c}$
hea $2_{\text {H }}$	6С§(60\%), 7C§	C2/c
hea2 ${ }_{\text {C }}$	$6 \mathrm{C} \ddagger(40 \%), 5 \mathrm{~T} \S$	C2/c

\dagger Kálmán et al. (2001). \ddagger Present work. § Kálmán et al. (2002).
Enraf-Nonius (1992). CAD-4 Express Manual. Enraf-Nonius Delft, The Netherlands.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Fábián, L. \& Kálmán, A. (1999). Acta Cryst. B55, 1099-1108.
Harms, K. (1996). XCAD4. Data Reduction Program for CAD-4 Diffractometers. Philipps, University of Marburg, Germany.
Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7036-7043.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin/Heidelberg: Springer Verlag.
Kálmán, A., Argay, Gy., Fábián, L., Bernáth, G. \& Fülöp, F. (2001). Acta Cryst. B57, 539-550.
Kálmán, A., Argay, Gy., Fábián, L., Bernáth, G. \& Gyarmati, Zs. (2002). Acta Cryst. B58, 494-501.

Figure 9
Linear arrays of alternating heterochiral OC (a) and $\mathrm{OH}(b)$ dimers. In each ribbon, three heterochiral dimers are joined by two homochiral dimers of opposite type. In the crystalline state they polymerize into antiparallel or parallel helices. The antiparallel helices with opposite chirality [observed in 8C and III (Kálmán et al., 2001)] are linked by heterochiral dimers (c) and (d).

Kálmán, A. \&. Párkányi, L. (1997). Adv. Mol. Struct. Res. 3, 189-226. Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-568.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.
Zorky, P. M. (1993). Acta Chim. Hung. 130, 173-181.

[^0]: ${ }^{\mathbf{1}}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE0017). Services for accessing these data are described at the back of the journal.

[^1]: ${ }^{\mathbf{2}}$ The notations refer to homochiral and heterochiral chains of hydrogenbonded molecules in antiparallel array cross-linked by either OH (index H) or OC (index C) dimers.

